Free Training Courses on Machine Learning and Artificial Intelligence
When the world’s smartest companies such as Microsoft, Google, Alphabet Inc., and Baidu are investing heavily in Artificial Intelligence (AI), the world is going to sit up and take notice. Chinese Internet giant Baidu spent USD1.5 billion on research and development.
And as proof of China’s strong focus on AI and Machine Learning, Sinovation Ventures, a venture capital firm, invested USD0.1 billion in “25 AI-related startups” in the last three years in China and the U.S.
Research shows that although genuine intelligence may still be a bit far off, AI and Machine Learning technologies are still expected to reign in 2017. Try reading up on Microsoft Project Oxford, IBM Watson, Google Deep Mind, and Baidu Minwa, and you’ll understand what I am trying to get at.
In 2015, Gartner’s Hype Cycle for Emerging Technologies introduced Machine Learning (ML), and the graph showed (Figure 1) that it would reach a plateau in 2 to 5 years. Big players such as Facebook and Amazon are increasingly exploiting the advantages of this concept, which is derived from artificial intelligence and statistics, to extract meaning from huge amounts of (big) data.
Research predicts that the AI market will grow to about USD37 billion by 2025; in 2015 it was about USD645 million!
Source: Gartner
Why are Machine Learning and Artificial Intelligence “Hot”?
"Machine learning is a core, transformative way by which we’re rethinking everything we’re doing” — Sundar Pichai, Google CEO
The pervasive commercial success of machine learning/artificial intelligence is visible everywhere—from Amazon recommending what movies you might like to see to self-driving Google cars that can tell a tree from a pedestrian.
AI/ML has changed how data-driven business leaders make decisions, gage their businesses, study human behavior, and view predictive analytics. If your organization needs to unleash the benefits of this extraordinary field, you need the right minds—quants and translators.
AI/ML, with tons of potential, is a great career choice for engineers or data mining/ pattern recognition enthusiasts out there. Also, Machine Learning is integral to data science, which is touted as the sexiest job of the 21st century by the Harvard Business Review.
An Evans Data Corp. study found that 36% of the 500 developers surveyed use elements of ML in their Big Data or other analytical projects. CEO Janel Garvin said, “Machine learning includes many techniques that are rapidly being adopted at this time and the developers who already work with Big Data and advanced analytics are in an excellent position to lead the way.”
Difference between Machine Learning and Artificial Intelligence
Artificial Intelligence (AI) and ML are not interchangeable terms. ML is sort of a subset of AI, which is a part of computer science trying to develop “machines capable of intelligent behavior.” Then, what is Machine Learning (ML)? “The science of getting computers to act without being explicitly programmed,” says Stanford. So you get that difference? You need both AI and ML experts to make smart machines that are truly intelligent.
List of Courses
Machine Learning Courses
1. Machine Learning by Andrew Ng
Broadly, it covers supervised and unsupervised learning, linear and logistic regression, regularization, and Naïve Bayes. He uses Octave and MatLab. The course is rich in case studies and recent practical applications. Students are expected to know the basics of probability, linear algebra, and computer science. The course has rave reviews from the users.
Go to Course: Start learning
2. Udacity’s Intro to Machine Learning
This course teaches you everything from clustering to decision trees, from ML algorithms such as Adaboost to SVMs. People also recommend you take the foundational Intro to Data Science course which deals with Data Manipulation, Data Analysis, Data Communication with Information Visualization, and Data at Scale.
Go to Course: Start learning
3. Statistical Machine Learning
The prerequisites for this course are his lectures on Intermediate Statistics and Machine Learning (10-715) intended for PhD students. If you can’t access these courses, you need to ensure you have the required math, computer science, and stats skills.
Go to Course: Start learning
4. EdX’s Learning from Data(Introductory Machine Learning)
The course requires an effort of 10 to 20 hours per week and lasts 10 weeks. They have another 5-week-course, Machine Learning for Data Science and Analytics, where newbies can learn more about algorithms.
Go to Course: Start learning
5. Coursera’s Neural Networks for Machine Learning
A pioneer in the field of deep learning, Hinton’s lecture videos on YouTube talk about the application of neural networks in image segmentation, human motion, modeling language, speech and object recognition, and so on. Students are expected to be comfortable with calculus and have requisite experience in Python programming.
Go to Course: Start learning
6. Google’s Deep Learning
Course leads Vincent Vanhoucke and Arpan Chakraborty expect the learners to have programming experience in Python and some GitHub experience and to know the basic concepts of ML and statistics, linear algebra, and calculus. The TensorFlow (Google’s own deep learning library) course has an added advantage of being self-paced.
Go to Course: Start learning
7. EdX’s Principles of Machine Learning
Instructors, Dr. Steve Elston and Cynthia Rudin talk about classification, regression in machine learning, supervised models, non-linear modeling, clustering, and recommender systems. To add a verified certificate, you’ll need to pay.
Go to Course: Start learning
8. Kaggle R Tutorial on Machine Learning
Go to Course: Start learning
9. Coursera’s Machine Learning Specialization
Amazon’s Emily Fox and Carlos Guestrin are the instructors, and they expect the learners to have basic math and programming skills along with a working knowledge of Python. Course access is free though getting a valid certificate is not.
Go to Course: Start learning
Artificial Intelligence Courses
1. EdX's Artificial Intelligence
Go to Course: Start learning
2. Udacity’s Intro to Artificial Intelligence
Go to Course: Start learning
3. Udacity's Artificial Intelligence for Robotics by Georgia Tech
Go to Course: Start learning
4. Artificial Intelligence: Principles and Techniques
Go to Course: Start learning
Comments
Post a Comment